EP3.1. Curva de linealidad, puntos de equilibrio y linealización

Ejercicio propuesto de análisis
Dados los siguientes modelos no lineales, (i) calcular los puntos de equilibrio analíticamente para cada valor dado de la entrada $u$ y verificar con el cálculo numérico con el código de MATLAB dado (se requiere una cuenta de MATLAB),; (ii) linealizar analíticamente en cada punto de equilibrio del ejercicio anterior y dar la solución en la forma matricial; (iii) comparar en simulación la respuesta temporal del modelo no lineal con la respuesta temporal del modelo lineal aproximado con una entrada escalón y una entrada sinusoidal cerca y lejos del punto de equilibrio, y analizar los resultados.

1. Modelo SIR

 $\left\{ \begin{array}{l} \frac{ds}{dt}=-\alpha si\\ \frac{di}{dt}=\alpha si-\beta i+u(t)\\\end{array} \right.$

$s(0)=0.8,i(0)=0.2,\beta =0.2,\gamma =0.17,u=\{0,0.5,1\} $

2. Péndulo simple

 $\left\{ \begin{array}{l} \dot{x}_1=x_2\\ \dot{x}_2=-\frac{g}{l}\sin x_1-\frac{f}{m}x_2+\frac{u(t)}{ml}\\ \end{array} \right.  $

 $x_1=\theta ,x_2=\dot{\theta},\theta(0) =70^{\circ},\dot{\theta}(0) =0~\mathrm{rad/s}, u=F_{ext}=\{0,1,2\}$

$m=0.45~\mathrm{kg}, l=0.84~\mathrm{m}, g=9.843~\mathrm{m/{s}^2}$

3. Oscilador de resistencia negativa

 $\left\{ \begin{array}{l} \dot{x}_1=x_2\\ \dot{x}_2=-x_1+\varepsilon (1-x_{1}^{2})x_2\\ \end{array} \right. $        

$x_1=v, x_2=\dot{v}, \varepsilon =0.5, x_1(0)= x_2(0)=0 $

4. Modelo presa-depredador

 $\left\{ \begin{array}{l} \dot{x}_1=\alpha x_1-\beta x_1x_2+u(t)\\ \dot{x}_2=\delta x_1x_2-\gamma x_2\\ \end{array} \right.  $

 $x_1=P, x_2=D, \alpha =2, \beta =1.2, \gamma =1, \delta =0.9, P(0)=5, D(0)=3, u=\{0,0.2,0.5\} $

5. Dos tanques acoplados

 $\left\{ \begin{array}{l} \dot{x}_1=-\frac{k_1}{A_1}\sqrt{x_1-x_2}+\frac{a}{A_1}u(t)\\ \dot{x}_2=\frac{k_1}{A_2}\sqrt{x_1-x_2}-\frac{k_2}{A_2}\sqrt{x_2}\\\end{array} \right.  $

 $A_1=A_2=0.45~\mathrm{m}^2, a=0.0005~\mathrm{m^3/s}, k_1=0.065~\mathrm{m^{2.5}/s}, k_2=0.047~\mathrm{m^{2.5}/s}, u=\{0,20,50,90\} \% $

6. Levitador magnético

$\left\{ \begin{array}{l} \dot{x}_1=x_2 \\ \dot{x}_2=g-\frac{kx_{3}^{2}}{mx_1}-\frac{f}{m}x_2\\ \dot{x}_3=\frac{k_i}{L}x_2-\frac{R}{L}x_3+\frac{u(t)}{L}\\\end{array} \right. $

$m=0.18~\mathrm{kg},f=1.3~\mathrm{Ns/m},g=9.8~\mathrm{m/{s}^2},R=20~\mathrm{\Omega}, L=0.05~\mathrm{H}, k=0.0028~\mathrm{m/A^2}$, $k_i=0.0001~\mathrm{Vs/m},u=\{0,1,10\}$

7. $\left\{ \begin{array}{l} \dot{x}_1=x_{1}^{2}-x_{2}^{2}\\ \dot{x}_2=x_1+u\\\end{array} \right.$,       $u=\{0,1\}$

8. $\left\{\begin{array}{l}\dot{x}_1=x_{1}^{2}+u\\\dot{x}_2=-(x_{1}^{2}+1)x_2\\\end{array} \right. $,  $u=\{0,1\}$

9. $\left\{\begin{array}{l} \dot{x}_1=x_2-\sin x_1\\ \dot{x}_2=x_{2}^{2}-u\\ \end{array} \right. $,      $u=\{0,1\}$

10. $\left\{\begin{array}{l} \dot{r}+4r-r\omega ^2=0\\ \dot{\omega}-r^2+u=0\\ \end{array} \right. $ ,      $u=\{0,1\}$

11. $\ddot{x}+u(t)x+x^3=0,u=\{-1,1\}$

12. $\dot{T}=T^2-30T+u(t),u=\{1000,2000\}$

13. $\dot{x}=u-x\left| x \right|$,   $u=\{0,1\}$

14. $\left\{\begin{array}{l} \dot{P}=-4.2\sqrt{P}+5.3T\\ \dot{T}=T^2-77.5T-5.5P+u\\ \end{array} \right. $,    $u=\{0,1\}$

15. $\left\{\begin{array}{l} \dot{\tau}=-\frac{\tau}{T}+\frac{K}{T}u\\ \dot{v}=\frac{\tau}{mr}\\ \dot{m}=0 \\ \end{array} \right. $,   $K=0.89,T=1.2,r=0.66$,    $u=\{0,1\}$



Comentarios