EP2.4. Simulación en MATLAB

Ejercicio propuesto de modelación
Dados los modelos que se dan a continuación, (i) describir y explicar el modelo matemático (entradas, salidas, estados, subsistemas, parámetros, etc.), dándole valores adecuados a cada uno de los parámetros y condiciones iniciales; (ii) obtener el diagrama de estado; (iii) implementar el modelo en un Script de Matlab usando la función ode45 o en Simulink, de manera legible, es decir, documentando adecuadamente el diagrama o código; (iv) verificar el funcionamiento correcto del modelo comparando los resultados de algunas simulaciones con información conocida o un comportamiento esperado; (v) simular e interpretar el comportamiento del sistema con una entrada escalón y una señal sinusoidal; (vi) cambiar un parámetro del modelo con al menos cinco valores diferentes y por simulación interpretar su efecto en el tiempo de pico, valor máximo, tiempo de establecimiento o valor final de la respuesta temporal.

1. Modelo SIR

 $\left\{ \begin{array}{l} \frac{ds}{dt}=-\alpha si\\ \frac{di}{dt}=\alpha si-\beta i\\\end{array} \right.$

$s(0)=0.8,i(0)=0.2,\beta =0.2,\gamma =0.17 $

2. Circuito RLC en serie

 $\left\{ \begin{array}{l} L\frac{di}{dt}+Ri+v_c(t)=v_e(t)\\ C\frac{dv_c}{dt}=i(t)\\ \end{array} \right.  $    

$v_e=10~\mathrm{V},R=20~\mathrm{\Omega}, L=0.2~\mathrm{H}, C=0.0005~\mathrm{F}, i(0)=0~\mathrm{A}, v_c(0)=0~\mathrm{V} $

3. Péndulo simple

 $\left\{ \begin{array}{l} \dot{x}_1=x_2\\\ \dot{x}_2=-\frac{g}{l}\sin x_1-\frac{f}{m}x_2+\frac{u}{ml}\\ \end{array} \right.  $

 $x_1=\theta ,x_2=\dot{\theta},\theta(0) =70^{\circ},\dot{\theta}(0) =0~\mathrm{rad/s}, u=F_{ext}=0$

$m=0.45~\mathrm{kg}, l=0.84~\mathrm{m}, g=9.843~\mathrm{m/{s}^2}$

4. Oscilador de resistencia negativa

 $\left\{ \begin{array}{l} \dot{x}_1=x_2\\ \dot{x}_2=-x_1+\varepsilon (1-x_{1}^{2})x_2\\ \end{array} \right.  $

 $x_1=v, x_2=\dot{v}, \varepsilon =0.5, x_1(0)= x_2(0)=0 $

5. Modelo presa-depredador

 $\left\{ \begin{array}{l} \dot{x}_1=\alpha x_1-\beta x_1x_2\\ \dot{x}_2=\delta x_1x_2-\gamma x_2\\ \end{array} \right.  $

 $x_1=P, x_2=D, \alpha =2, \beta =1.2, \gamma =1, \delta =0.9, P(0)=5, D(0)=3 $

6. Dos tanques acoplados

 $\left\{ \begin{array}{l} \dot{x}_1=-\frac{k_1}{A_1}\sqrt{x_1-x_2}+\frac{a}{A_1}u\\ \dot{x}_2=\frac{k_1}{A_2}\sqrt{x_1-x_2}-\frac{k_2}{A_2}\sqrt{x_2}\\\end{array} \right.  $

 $A_1=A_2=0.45~\mathrm{m}^2, a=0.0005~\mathrm{m^3/s}, k_1=0.065~\mathrm{m^{2.5}/s}, k_2=0.047~\mathrm{m^{2.5}/s}, u=[0,100] \% $

7. Sistema de control

Diagrama de control


Comentarios