Dadas las siguientes ecuaciones de estado, (i) transformar a la forma canónica diagonal o forma canónica de Jordan (comprobar los resultados con la función jordan); (ii) resolver la ecuación de estado transformada (más fácil por ser diagonal o cuasidiagonal) por medio de la solución de cada ecuación diferencial, si la entrada es un escalón unitario; (iii) obtener con la función step de MATLAB la respuesta temporal de los modelos original y transformado, y comparar los gráficos con los de la solución de la tarea (ii).
- $\dot{\mathbf{x}}=\left[ \begin{matrix} -4& -3\\ 0& -1\\\end{matrix} \right] \mathbf{x}+\left[ \begin{array}{c} 2\\ -1\\\end{array} \right] u,y=\left[ \begin{matrix} 1& 0\\\end{matrix} \right] \mathbf{x},\mathbf{x}(0)=0$
- $\dot{\mathbf{x}}=\left[ \begin{matrix} 0& 1\\ -1& -2\\\end{matrix} \right] \mathbf{x}+\left[ \begin{array}{c} 2\\ -1\\\end{array} \right] u,y=\left[ \begin{matrix} 1& 0\\\end{matrix} \right] \mathbf{x},\mathbf{x}(0)=0$
- $\dot{\mathbf{x}}=\left[ \begin{matrix} 0& -2\\ 1& -2\\\end{matrix} \right] \mathbf{x}+\left[ \begin{array}{c} 2\\ 1\\\end{array} \right] u,y=\left[ \begin{matrix} 1& 0\\\end{matrix} \right] \mathbf{x},\mathbf{x}(0)=0$
- $\dot{\mathbf{x}}=\left[ \begin{matrix} -1& -2\\ 1& -3\\\end{matrix} \right] \mathbf{x}+\left[ \begin{array}{c} 2\\ 1\\\end{array} \right] u,y=\left[ \begin{matrix} 1& 0\\\end{matrix} \right] \mathbf{x},\mathbf{x}(0)=0$
- $\dot{\mathbf{x}}=\left[ \begin{matrix} -1& 0& -1\\ 2& -3& -2\\ 0& 0& -2\\\end{matrix} \right] \mathbf{x}+\left[ \begin{array}{c} 2\\ 2\\ 1\\\end{array} \right] u,y=\left[ \begin{matrix} 0& 1& 1\\\end{matrix} \right] \mathbf{x},\mathbf{x}(0)=0$
- $\dot{\mathbf{x}}=\left[ \begin{matrix} -1& 0& 0\\ 1& -2& -1\\ 0& 0& -1\\\end{matrix} \right] \mathbf{x}+\left[ \begin{array}{c} 2\\ 2\\ 1\\\end{array} \right] u,y=\left[ \begin{matrix} 0& 1& 1\\\end{matrix} \right] \mathbf{x},\mathbf{x}(0)=0$
- $\dot{\mathbf{x}}=\left[ \begin{matrix} -6& 0& 4\\ -1& -3& 3\\ -2& 0& -2\\\end{matrix} \right] \mathbf{x}+\left[ \begin{array}{c} 2\\ 2\\ 1\\\end{array} \right] u,y=\left[ \begin{matrix} 0& 1& 1\\\end{matrix} \right] \mathbf{x},\mathbf{x}(0)=0$
- $\dot{\mathbf{x}}=\left[ \begin{matrix} -2& 0& 0& 0\\ -1& -3& -1& 0\\ 0& 0& -2& 0\\ -1& -1& -1& -2\\\end{matrix} \right] \mathbf{x}+\left[ \begin{array}{c} 0\\ 1\\ 0\\ 2\\\end{array} \right] u,y=\left[ \begin{matrix} -1& -2& -3& 3\\\end{matrix} \right] \mathbf{x},\mathbf{x}(0)=0$
- $\dot{\mathbf{x}}=\left[ \begin{matrix} -2& 0& 1& 0\\ 0& -2& 0& -1\\ -1& -1& -4& 1\\ -2& -2& -3& -1\\\end{matrix} \right] \mathbf{x}+\left[ \begin{array}{c} 0\\ 1\\ 0\\ 2\\\end{array} \right] u,y=\left[ \begin{matrix} -1& -2& -3& 3\\\end{matrix} \right] \mathbf{x},\mathbf{x}(0)=0$
- $\dot{\mathbf{x}}=\left[ \begin{matrix} -3& -1& -1& 1\\ -1& -3& -1& -1\\ 0& 0& -2& 0\\ -2& -2& -2& -2\\\end{matrix} \right] \mathbf{x}+\left[ \begin{array}{c} 0\\ 1\\ 0\\ 2\\\end{array} \right] u,y=\left[ \begin{matrix} -1& -2& -3& 3\\\end{matrix} \right] \mathbf{x},\mathbf{x}(0)=0$
- $\dot{\mathbf{x}}=\left[ \begin{matrix} -5& 0& 0& 0\\ 1& -4& 2& -1\\ -2& -2& -8& 1\\ -1& -1& -1& -5\\\end{matrix} \right] \mathbf{x}+\left[ \begin{array}{c} 0\\ 1\\ 0\\ 2\\\end{array} \right] u,y=\left[ \begin{matrix} -1& -2& -3& 3\\\end{matrix} \right] \mathbf{x},\mathbf{x}(0)=0$
- $\dot{\mathbf{x}}=\left[ \begin{matrix} -3& -1& -1& 1\\ 2& 0& 4& -3\\ -3& -3& -7& 2\\ -2& -2& -2& -2\\\end{matrix} \right] \mathbf{x}+\left[ \begin{array}{c} 0\\ 1\\ 0\\ 2\\\end{array} \right] u,y=\left[ \begin{matrix} -1& -2& -3& 3\\\end{matrix} \right] \mathbf{x},\mathbf{x}(0)=0$
- $\dot{\mathbf{x}}=\left[ \begin{matrix} -3& -2& -2& 2\\ 1& -1& 3& -3\\ -2& -1& -5& 1\\ -2& -1& -1& -3\\\end{matrix} \right] \mathbf{x}+\left[ \begin{array}{c} 0\\ 1\\ 0\\ 2\\\end{array} \right] u,y=\left[ \begin{matrix} -1& -2& -3& 3\\\end{matrix} \right] \mathbf{x},\mathbf{x}(0)=0$
- $\dot{\mathbf{x}}=\left[ \begin{matrix} -3& -2& -2& 2\\ 5& 3& 9& -5\\ -4& -3& -7& 1\\ 0& 1& 3& -5\\\end{matrix} \right] \mathbf{x}+\left[ \begin{array}{c} 0\\ 1\\ 0\\ 2\\\end{array} \right] u,y=\left[ \begin{matrix} -1& -2& -3& 3\\\end{matrix} \right] \mathbf{x},\mathbf{x}(0)=0$
- $\dot{\mathbf{x}}=\left[ \begin{matrix} -3& -2& -2& 2\\ 3& 1& 4& -2\\ -1& 0& -2& -1\\ 1& 2& 3& -4\\\end{matrix} \right] \mathbf{x}+\left[ \begin{array}{c} 0\\ 1\\ 0\\ 2\\\end{array} \right] u,y=\left[ \begin{matrix} -1& -2& -3& 3\\\end{matrix} \right] \mathbf{x},\mathbf{x}(0)=0$
- $\dot{\mathbf{x}}=\left[ \begin{matrix} -4.5& -5.75& -3& 5.75& 3.5& -0.75\\ -2& -1.5& -1& -4.5& -5& -1.5\\ -2.5& 1.25& -7& -2.25& -2.5& 1.25\\ -2& 1& 0& -8& -2& 1\\ 1.5& 6.25& 2& -5.25& -9.5& -1.75\\ 0& 0.5& -1& 0.5& -3& -5.5\\\end{matrix} \right] \mathbf{x}+\left[ \begin{array}{c} 1\\ 2\\ 0\\ 2\\ -1\\ 4\\\end{array} \right] u,\mathbf{x}(0)=0,\mathbf{C}=\left[ \begin{array}{c} 0.5\\ 0.75\\ 0\\ 0.25\\ -0.5\\ 0.75\\\end{array} \right] ^T$
Comentarios