Dadas las siguientes ecuaciones de estado lineales de tiempo discreto, (i) desarrollar un programa en MATLAB para obtener y graficar la solución iterativa si la entrada es un escalón unitario y comparar los resultados con los obtenidos con la función step o lsim de MATLAB, (ii) repetir la tarea anterior si la entrada es una entrada sinusoidal, (iii) resolver analíticamente aplicando la transformada z.
- $\mathbf{x}(k+1)=\left[ \begin{matrix} 1& 0.5\\ 0& 1\\\end{matrix} \right] \mathbf{x}(k)+\left[ \begin{array}{c} 0.125\\ 0.5\\\end{array} \right] u(k),\mathbf{x}(0)=\left[ \begin{array}{c} 0\\ 0\\\end{array} \right] $
- $\mathbf{x}(k+1)=\left[ \begin{matrix} 1& 0.086\\ -0.172& 0.733\\\end{matrix} \right] \mathbf{x}(k)+\left[ \begin{array}{c} 0.00453\\ 0.0861\\\end{array} \right] u(k),\mathbf{x}(0)=\left[ \begin{array}{c} 0\\ 0\\\end{array} \right] $
- $\mathbf{x}(k+1)=\left[ \begin{matrix} 0.819& 0\\ 0.234& 0.741\\\end{matrix} \right] \mathbf{x}(k)+\left[ \begin{array}{c} 0.181\\ 0.025\\\end{array} \right] u(k),\mathbf{x}(0)=\left[ \begin{array}{c} 1\\ 0\\\end{array} \right] $
- $\mathbf{x}(k+1)=\left[ \begin{matrix} e^{-T}& 0\\ 1-e^{-T}& 1\\\end{matrix} \right] \mathbf{x}(k)+\left[ \begin{array}{c} 1-e^{-T}\\ T-1+e^{-T}\\\end{array} \right] u(k),T=\{0.1,1\},\mathbf{x}(0)=\left[ \begin{array}{c} 1\\ 0\\\end{array} \right] $
- $\mathbf{x}(k+1)=\left[ \begin{matrix} 0.5& 1\\ 0& -0.2\\\end{matrix} \right] \mathbf{x}(k)+\left[ \begin{array}{c} 1\\ 0\\\end{array} \right] u(k-1),\mathbf{x}(0)=\left[ \begin{array}{c} 1\\ 0\\\end{array} \right] $
- $\mathbf{x}(k+1)=\left[ \begin{matrix} 0.5& 1\\ 0& -0.2\\\end{matrix} \right] \mathbf{x}(k)+\left[ \begin{array}{c} 1\\ 0\\\end{array} \right] u(k-2),\mathbf{x}(0)=\left[ \begin{array}{c} 1\\ 0\\\end{array} \right] $
- $\mathbf{x}(k+1)=\left[ \begin{matrix} -0.5& 0\\ 0& 0.3\\\end{matrix} \right] \mathbf{x}(k)+\left[ \begin{matrix} 1& 0\\ 0& 1\\\end{matrix} \right] \mathbf{u}(k),\mathbf{x}(0)=\left[ \begin{array}{c} 1\\ 0\\\end{array} \right] $
- $\mathbf{x}(k+1)=\left[ \begin{matrix} -0.5& 0\\ 0& 0.3\\\end{matrix} \right] \mathbf{x}(k)+\left[ \begin{matrix} 1& 0\\ 0& 1\\\end{matrix} \right] \mathbf{u}(k-3),\mathbf{x}(0)=\left[ \begin{array}{c} 1\\ 0\\\end{array} \right] $
- $\mathbf{x}(k+1)=\left[ \begin{matrix} -0.2& 1& 0\\ 0& -0.2& 0\\ 0& 0& 0.5\\\end{matrix} \right] \mathbf{x}(k)+\left[ \begin{array}{c} 0\\ 1\\ 1\\\end{array} \right] u(k-1),\mathbf{x}(0)=\left[ \begin{array}{c} 1\\ 0\\ 1\\\end{array} \right] $
Comentarios