Dadas las siguientes ecuaciones en diferencias, (i) aplicar las fórmulas básicas y las propiedades de la transformada z para hallar la solución; (ii) bosquejar el gráfico de la solución; (iii) verificar la solución analítica comparándola con la solución iterativa en los primeros 5 instantes de muestreo.
- y(k+1)−0.6y(k)=0,y(0)=1
- y(k+2)−4y(k+1)+3y(k)=0,y(0)=0,y(1)=1
- y(k+2)+0.1y(k+1)−0.02y(k)=0,y(0)=0,y(1)=−1
- y(k+2)−0.25y(k)=0,y(0)=1,y(1)=0
- y(k+2)−0.25y(k)=0,y(0)=0,y(1)=−1
- y(k)−0.25y(k−2)=0,y(0)=0,y(1)=−1
- y(k+3)+0.8y(k+2)=0,y(0)=1,y(1)=0,y(2)=1
- y(k+2)+0.4y(k+1)+0.04y(k)=0,y(0)=1,y(1)=0
- y(k+5)−0.2y(k+4)−0.35(k+3)=0,y(0)=1,y(1)=0,y(2)=−1,y(3)=0,y(4)=1
- y(k+2)−y(k+1)+y(k)=0,y(0)=1,y(1)=−1
- y(k+2)−y(k+1)+0.41y(k)=0,y(0)=0,y(1)=−1
- y(k+1)−0.6y(k)=2,y(0)=0
- y(k+1)−0.6y(k)=0.6k,y(0)=−0.5
- y(k+1)−0.6y(k)=us(k−1),y(0)=1
- y(k+1)−0.6y(k)=us(k−2),y(0)=1
- y(k+1)−0.3y(k)=2,y(0)=0.5
- y(k+1)−0.3y(k)=k+3,y(0)=2
- y(k+1)−0.3y(k)=0.3k,y(0)=0.3
- y(k+1)−0.3y(k)=sink,y(0)=0.3
- y(k+1)−0.3y(k)=us(k−2)−us(k−4),y(0)=2
- y(k+2)−0.4y(k+1)+0.04y(k)=1,y(0)=0,y(1)=0
- y(k+2)−0.4y(k+1)+0.04y(k)=us(k−1),y(0)=0,y(1)=0
- y(k+2)−0.4y(k+1)+0.04y(k)=k+1,y(0)=0,y(1)=0
- y(k+2)−0.4y(k+1)+0.04y(k)=0.2k,y(0)=0,y(1)=−1
- y(k+2)−0.4y(k+1)+0.04y(k)=sin0.2k,y(0)=0,y(1)=−1
- y(k+2)−0.4y(k+1)+0.04y(k)=us(k−1),y(0)=y(1)=0
- y(k)−y(k−1)=0,y(0)=0.1
- y(k)−y(k−1)=u(k),u(k)=1,y(0)=0.1
- y(k)−y(k−1)=u(k),u(k)=−1,y(0)=0
- y(k)+y(k−1)=u(k),u(k)=(−1)k,y(0)=1
- y(k)+y(k−1)=us(k−1)−us(k−2),y(0)=1
- y(k+1)+ay(k)=u(k+1)+au(k),u(k)=k,y(0)=0
- {x(k+1)=y(k)y(k+1)=1−0.4x(k), x(0)=−1,y(0)=1
- y(k+2)+4y(k)=8×2kus(k),y(0)=0,y(1)=0
- y(k+2)+4y(k)=8×2ksin(πk/2)us(k),y(0)=0,y(1)=0
- y(k+2)+4y(k)=2k−1us(k−1),y(0)=y(1)=0
Comentarios